
1996 IT Society Paper Award
The 1996 Information Theory Society Paper Award has been awarded to Frans Willems, Yuri

Shtarkov and Tjalling Tjalkens for their paper entitled “The Context-Tree Weighting Method: Basic
Properties” published in theIEEE Transactions on Information Theory,Volume IT-41, No. 3, May
1995.

The Information Theory Society Paper Award, consisting of a certificate and honorarium, is
given annually for an outstanding publication in the field of information theory published anywhere
during the preceding two-year period. Its purpose is to recognize exceptional publcations in the
field and to stimulate interest in, and encourage contributions to, the discipline.

Reflections on the Prize Paper:
“The Context-Tree Weighting Method: Basic Properties”

Frans Willems1, Yuri Shtarkov 2, and Tjalling Tjalkens 3

1 Introduction

At the IEEE ISIT in Budapest in 1991 we agreed that Yuri would come to Eindhoven the next
year. Supported by the Universiteitsfonds Eindhoven, whose chairman was Jack van Lint at that
time, Yuri visited the Information Theory group in May 1992. We decided to investigate universal
source coding algorithms for FSMX sources, like e.g. the method proposed by Rissanen in [5]. It
was our idea that these algorithms were designed to have a good asymptotical behavior while the
non-asymptotical performance, which is important in real life, was not very well understood.

After a while we realized that the idea of selecting relevant contexts was not a good one. This
prevented researchers to determine the non-asymptotical behavior of their methods. An obvious
alternative was weighting, an almost classical procedure. This way of thinking more or less imme-
diately led to the context-tree weighting (CTW) algorithm.

The CTW algorithm follows from first principles and combines a desirable (asymptotical as well
as non-asymptotical) performance with an extremely simple analysis. Therefore, when Michelle
Effros asked us to write a “reflections”-paper for the IT Newsletter, we decided to write a mini-course
on “universal source coding for tree sources” which at the end focusses on the CTW algorithm. It
is the content of the following sections.

2 Sources

Let us consider an information source that generatesbinary sequences of lengthT . A sequence

xT
1 = x1x2 · · · xT is generated with (actual) probabilityPa(x

T
1)

1= Pr{XT
1 = xT

1 }.
Example: For a memoryless sourcePa(x

T
1) = 5t=1,T Pa(xn) with Pa(1) = 1 − Pa(0)

1= θ . The
parameterθ , i.e. the probability of generating a 1, has a value in the range[0, 1]. If the sequencexT

1 contains
a zeroes andb ones thenPa(x

T
1) = (1 − θ)aθb.

1Electrical Engineering Department, Eindhoven University of Technology, Eindhoven, The Netherlands.
2Institute for Problems of Information Transmission, Moscow, Russia.
3Electrical Engineering Department, Eindhoven University of Technology, Eindhoven, The Netherlands.

1

3 Codes

A source code assigns to each (possible) source sequencexT
1 a binary codewordc(xT

1) with length
L(xT

1). We want the lengths of the codewords to be as short as possible, however it is required
that the source sequence can be reconstructed from its codeword. Here we only consider prefix
codes. In a prefix code no codeword is the prefix of any other codeword. Therefore a prefix code
is instantaneously uniquely decodable, i.e. when we receive the last digit of a codeword we know
that it is the last one.

Example: Consider for source sequences of lengthT = 2 the assignment in the table below.

xT
1 c(xT

1) L(xT
1)

00 0 1
01 10 2
10 110 3
11 111 3

The lengths of the codewords of a binary prefix code satisfy Kraft’s inequality (see e.g. Cover
and Thomas[1], page 82): ∑

xT
1

2−L(xT
1) ≤ 1. (1)

Proof: Let L∗ 1= maxxT
1

L(xT
1). A codewordc(xT

1) has 2L
∗−L(xT

1) descendants at levelL∗. In
a prefix code no two different codewords can have an identical descendant at levelL∗. Therefore∑

xT
1

2L∗−L(xT
1) ≤ 2L∗

. 2

Example: For the code{0, 10, 110, 111} we obtain the Kraft sum 2−1 + 2−2 + 2−3 + 2−3 ≤ 1.

4 Redundancy

The individual redundancy of a source code, relative to the actual source, for sequencexT
1 is defined

as

ρ(xT
1)

1= L(xT
1) − log

1

Pa(x
T
1)

. (2)

The base of the logarithm is assumed to be 2 here. For the expected redundancy we obtain

ρ̄
1=

∑
xT

1

Pa(x
T
1)L(xT

1) −
∑
xT

1

Pa(x
T
1) log

1

Pa(x
T
1)

= L̄ − H(XT
1), (3)

i.e. the difference between the expected codeword lengthL̄ and the entropyH(XT
1) of the source

sequences.
The smallest possible expected redundancy is 0.
Proof: Rewrite

ρ̄ =
∑
xT

1

Pa(x
T
1) log

Pa(x
T
1)

2−L(xT
1)/K

+ log
1

K
, (4)

2

whereK = ∑
xT

1
2−L(xT

1). The first term on the right hand side is a divergence and can not be
negative (see [1] page 26). The second term is non-negative by Kraft’s inequality (1). 2

Note that we achievēρ = 0 only if the codeword lengthL(xT
1) = log 1/Pa(x

T
1) for all xT

1 .
Therefore we call such codeword lengthsideal. It is our intention to design codes that approach
these ideal codeword lengths as closely as possible.

Example: Let T = 2. Consider the code{0, 10, 110, 111} and a memoryless source withθ = 0.2. The
table below lists the individual redundancies for this code.

xT
1 c(xT

1) L(xT
1) Pa(x

T
1) ρ(xT

1)

00 0 1 0.64 0.356
01 10 2 0.16 -0.644
10 110 3 0.16 0.356
11 111 3 0.04 -1.644

The expected redundancyρ̄ = 0.116.

5 Arithmetic coding

Assume a lexicographical ordering over the sequences. Now letQa(x
T
1)

1= ∑
x̃T <xT

1
Pa(x̃

T) be

the cumulative probability ofxT
1 . Then associate to a source sequencexT

1 the source interval
I (xT

1) = [Qa(x
T
1), Qa(x

T
1) + Pa(x

T
1)). Note that all source intervalsI (xT

1) are disjoint, and that
their union is[0, 1).

Also to a codeword there corresponds an interval. To codewordc having lengthL there corre-
sponds an intervalJ (c) = [.c, .c + 2−L), where.c is the number obtained by consideringc as a
binary fraction. Note that a codeword can only be the prefix of another codeword if its code interval
contains the code interval of the other codeword.

The idea of arithmetic coding is to choose for a given source sequencexT
1 the codewordc(xT

1)

with a code intervalJ (c(xT
1)) insideI (xT

1). This is obtained by taking

L(xT
1) = dlog 1/Pa(x

T
1)e + 1,

and.c = dQa(x
T
1) · 2L(xT

1)e2−L(xT
1), (5)

wheredze is the smallest integer≥ z. This follows from

dQa(x
T
1) · 2L(xT

1)e2−L(xT
1) + 2−L(xT

1)

< Q + 21−L

= Q + 2−dlog 1/Pae ≤ Q + Pa, (6)

in which we simplified the notation a little bit.
Example: Let T = 2 and consider again a memoryless source withθ = 0.2. The source intervals,

codewords, and redundancies are put in the table.

xT
1 Pa(x

T
1) Qa(x

T
1) L(xT

1) c(xT
1) ρ(xT

1)

00 0.64 0.00 2 00 1.356
01 0.16 0.64 4 1011 1.356
10 0.16 0.80 4 1101 1.356
11 0.04 0.96 6 111110 1.356

3

SinceL(xT
1) < log 1/Pa(x

T
1) + 2 we may conclude that arithmetic coding achieves codeword

lengths within 2 bit from the ideal codeword length, orρ(xT
1) < 2 for all xT

1 . This implies also that
ρ̄ < 2 or L̄ < H(XT

1) + 2.
For the cumulative probability we can write (Elias):

Qa(x
T
1) =

∑
t=1,T |xt=1

Pa(x1x2 · · · xt−10). (7)

This makes it easy to compute this probability (andPa(x
T
1)) if, after knowingx1x2 · · · xt−1 and

Pa(x1x2 · · · xt−1) we can easily computePa(x1x2 · · · xt−10) andPa(x1x2 · · · xt−11).
Example: For T = 3 and a memoryless source havingθ = 0.2 we get e.g.Qa(101) = Pa(0) +

Pa(100) = 0.8 + 0.2 · 0.8 · 0.8 = 0.928 andPa(101) = 0.2 · 0.8 · 0.2 = 0.032.
If we use, instead of the actual distributionPa(x

T
1), an arbitrary coding distributionPc(x

T
1), we

obtain codeword lengths for which

L(xT
1) < log

1

Pc(x
T
1)

+ 2. (8)

We say that thecoding redundancyis smaller than 2 bits. Note that it is necessary thatPc(x
T
1) > 0

for xT
1 such thatPa(x

T
1) > 0.

Note that arithmetic coding achieves codeword lengths that are very close to what we want (i.e.
log 1/Pc) and that no tables are needed to store the code (the codeword is computed from the source
sequence and vice versa). Issues regarding implementation of this technique are considered e.g. by
Rissanen[4] and Pasco[3]. We now have to concentrate on constructing good coding distributions.

6 One unknown parameter

Suppose that our actual source is memoryless with a, to us unknown, parameterθ ∈ [0, 1]. Is it
possible now to design a code which has acceptable individual redundancies for all sequencesxT

1
relative to all possible sources?

The answer to this question turns out to be affirmative. Just apply arithmetic coding with a coding
distribution equal to an estimated distributionPe(x

T
1) formulated by Krichevsky and Trofimov[2].

This KT-distribution is defined by the following conditional probability:

Pe(Xt = 1|xt−1
1) = b + 1/2

a + b + 1
, (9)

for xt−1
1 containinga zeroes andb ones. Our estimated block probabilityPe(x

T
1) is the product of

conditional probabilities as in (9).
Example: The estimated probabilityPe(01110) = 1

2 · 1
4 · 3

6 · 5
8 · 3

10 = 3
256. Similarly Qe(01110) =

1
2 · 3

4 + 1
2 · 1

4 · 3
6 + 1

2 · 1
4 · 3

6 · 3
8 = 59

128 (see figure 1).
The estimated block probability of a sequence containinga zeroes andb ones is

Pe(a, b) = 1/2 · . . . · (a − 1/2) · 1/2 · . . . · (b − 1/2)

1 · 2 · . . . · (a + b)
. (10)

Example: Tabulated below isPe(a, b) for several(a, b).

4

Q
Q

QQ

Q
Q

QQ
Q

Q
QQ�

�
��

�
�

��
�

�
��Q

Q
QQ

1/2

1/4

3/6

3/6

Q
Q

QQ

3/8

3/4

5/8

3/10

0

1

1

1

0

Figure 1: Computation ofPe(01110) andQe(01110).

a b 1 2 3 4 5
0 1/2 3/8 5/16 35/128 63/256
1 1/8 1/16 5/128 7/256 21/1024
2 1/16 3/128 3/256 7/1024 9/2048
3 5/128 3/256 5/1024 5/2048 45/32768

What is the redundancy of this KT-estimated distribution? Consider a sequencexT
1 with a

zeroes andb ones, then from (8) we may conclude that

L(xT
1) < log 1/Pe(a, b) + 2. (11)

Therefore

ρ(xT
1) < log

1

Pe(a, b)
+ 2 − log

1

(1 − θ)aθb

= log
(1 − θ)aθb

Pe(a, b)
+ 2

≤ 1

2
log(a + b) + 3, (12)

where we used lemma 1 of [7] to upper bound the logPa/Pe-term. This term, called theparameter
redundancy, is never larger than12 log(a + b) + 1. Hence the individual redundancy is not larger
than 1

2 logT + 3 for all xT
1 and allθ ∈ [0, 1].

Example: Let T = 1024, then the codeword length is not larger than the ideal codeword length plus
1
2 log 1024+ 3 = 8 bit.

7 Tree sources

If a source is memoryless, each new source symbol is generated according to the same parameter
θ . In a more complex situation we can assume that the parameter for generating the next symbol
depends on the most recent source symbols. A tree source is a nice concept to describe such sources.
A tree source consists of a setS of suffixes that together form a tree (see figure 2). To each suffix
(leaf) s in the tree there corresponds a parameterθs . The probability of the next source symbol
being one depends on the suffix inS of the semi-infinite sequence of past source symbols.

We clearly want to distinguish between parameters and model. The model is the mechanism
that enables the parameters, i.e. the suffix set (or tree).

5

A context of a source symbolxt is a suffix of the semi-infinite sequence· · · xt−2xt−1 that
precedes it.

Example: Let S 1= {00, 10, 1} andθ00 = 0.5, θ10 = 0.3, andθ1 = 0.1 then

b

b

�
�

��

Z
Z

ZZ

�
�

��

Z
Z

ZZ

b

parameters

θ10 = 0.3

model

1

0

0

1

θ1 = 0.1

θ00 = 0.5

Figure 2: Tree source with parameters and model.

Pa(Xt = 1| · · · , Xt−2 = 0, Xt−1 = 0) = 0.5,

Pa(Xt = 1| · · · , Xt−2 = 1, Xt−1 = 0) = 0.3,

Pa(Xt = 1| · · · , Xt−1 = 1) = 0.1. (13)

For each source symbolxt we start in the root of the tree (see figure 2) and follow a path determined by past
symbolsxt−1, xt−2, · · ·. We always end up in a leaf. There we find the parameter for generatingxt .

8 Known model, unknown parameters

In this section we assume that we know the tree model of the actual source but not its parameters.
Can we find a good coding distribution for this case?

In principle this problem is quite simple. Since we know the model we can for each source
symbol determine its suffix. All symbols that correspond to the same suffixs ∈ S form a memoryless
subsequence whose statistic is determined by an unknown parameterθs . For this subsequence we
simply use the KT-estimator. The estimated probability of the entire source sequence is the product
of the KT-estimates for the subsequences and hence by (8), we obtain

L(xT
1) < log 1/

∏
s∈S

Pe(as, bs) + 2. (14)

Example: Let S = {00, 10, 1}. The estimated probability of the sequence 0100110 given the past

1 0 0 1 0 0 1· · · 1 0

00 00

10 10

1 1 1past

1

Figure 3: A sequence, its subsequences, and the past.

· · · 110 (see figure 3) isP S
e (0100110| · · · 110) = 1

2 · 1
2 · 1

2 · 3
4 · 3

4 · 1
4 · 3

6 = 3
8 · 3

8 · 1
16 = 9

1024, where3
8, 3

8,

6

and 1
16 are the probabilities of the subsequences 11, 00, and 010, corresponding to the leaves 00, 10, and 1

respectively.
Again, what is the redundancy of this estimated distribution? Consider a sequencexT

1 with
subsequence corresponding to leafs havingas zeroes andbs ones. Then, using (14) we obtain

ρ(xT
1) <

∑
s∈S

log
(1 − θs)

as θ
bs
s

Pe(as, bs)
+ 2,

≤
∑

s∈S|as+bs>0

(
1

2
log(as + bs) + 1

)
+ 2

≤ |S|γ (
T

|S|) + 2, (15)

where we again used lemma 1 in [7] for bounding the parameter redundancies for all the subse-
quences. Convexity is used to obtain a bound on the sum of the logarithms in terms of theγ function
which is defined as

γ (z)
1=

{
z for 0 ≤ z < 1
1
2 logz + 1 for z ≥ 1.

(16)

Note that (15) holds for allxT
1 and allθs ∈ [0, 1] for s ∈ S.

Example: LetS = {00, 10, 1} andT = 1024, then the codeword is never longer than the ideal codeword
length plus3

2 log 1024
3 + 3 + 2 = 17.623 bit.

9 Weighting alternatives

Suppose thatP 1
c (xT

1) is a good coding distribution for source 1 andP 2
c (xT

1) for source 2. Then the
weighteddistribution

P w
c (xT

1)
1= P 1

c (xT
1) + P 2

c (xT
1)

2
(17)

is a good coding distribution for both source 1 and 2.
Proof: Let i ∈ {1, 2}, then

L(xT
1) < log

1

P w
c (xT

1)
+ 2 (18)

≤ log
2

P i
c (x

T
1)

+ 2 = log
1

P i
c (x

T
1)

+ 3. (19)

2

So the bound on the codeword length increases (see (8)) by 1 bit. In practice the increase is far less,
especially ifP 1

c (xT
1) andP 2

c (xT
1) are approximately equal.

Note that, if after observingxT
1 we selectthe i that minimizesP i

c (x
T
1), we loose exactly 1 bit.

This bit is now needed to specify the source index.
Example: Suppose sources 1 and 2 are memoryless with parametersθ1 = 0.8 andθ2 = 0.4. Then

Pw(X1 = 1) = 1/2(0.8 + 0.4) = 0.6, Pw(X1 = 1, X2 = 1) = 1/2(0.8 · 0.8 + 0.4 · 0.4) = 0.40, and
Pw(X1 = 1, X2 = 1, X3 = 1) = 1/2(0.8 · 0.8 · 0.8 + 0.4 · 0.4 · 0.4) = 0.288. HencePw(X3 = 1|X1 =
1, X2 = 1) = 0.288/0.4 = 0.72 which is close toθ1. Similarly, Pw(X3 = 1|X1 = 0, X2 = 0) = 0.44 is
close toθ2.

7

10 Unknown model

10.1 Context tree

If the actual model of our tree source is not known, we can use acontext treeto compute an
appropriate coding distribution. A context tree (see figure 4) consists of nodes that correspond to
contextss up to a certain depthD. The rootλ of the context tree corresponds to the empty context.
Each nodes in the context tree is associated with the subsequence of source symbols that occurred
after contexts.

Example: Suppose that the source generated the sequence 0100110 while the past symbols were· · · 110.

XXXXX�����
XXXXX�����
XXXXX�����

PPPPPP������

PPPPPP������

Z
Z

Z
ZZ
�

�
�

��

.3 7

-

7
-

3,6
1

4
2,5

-

7

3,6

1,4

2,5

XXXXX����� 3,6,7

0

1,2,4,5

1,2,3,4,5,6,7

1 0 0 0 1

21 4 6

1

5

past source sequence

1· · ·

1

0

1 0

Figure 4: The context tree splits up the source sequence.

Then the source symbols are partitioned by the context tree, see figure 4.

10.2 CTW algorithm

We are now ready to formulate the context-tree weighting algorithm.
We start by making the practical assumption that in nodes of the context tree we only storeas

andbs , i.e. the number of zeroes and ones in the subsequence associated with contexts.
First we consider a leafs of the context tree, i.e. a node (context) at depthD. Since onlyas

andbs are available in this node, we can assume nothing more than that the subsequence associated
with nodes is memoryless and thatPe(as, bs) is a good weighted probability for it, i.e.

P s
w

1= Pe(as, bs) if depth(s) = D. (20)

These weighted probabilities are needed to start the recursion described in the next paragraph.
For an internal nodes in the context tree, the following argument holds. Suppose that we have

good weighted probabilitiesP 0s
w andP 1s

w for the subsequences associated with nodes 0s and 1s,
the children (see figure 5) ofs. Then for the subsequence associated with contexts there are two
possible alternatives. It could be memoryless, in which casePe(as, bs) would be good coding

8

s

HHHH����

1s

0s

Figure 5: Parent nodes and its children 0s and 1s.

probability for it. Or, it could not be memoryless, and then splitting up the sequence in the two
subsequences that are associated with 0s and 1s would be necessary, and the product of the weighted
probabilitiesP 0s

w andP 1s
w could serve as a good coding probability. Following the philosophy in

section 9 it is completely clear that we should just weight these two alternatives:

P s
w

1= Pe(as, bs) + P 0s
w · P 1s

w

2
if depth(s) < D. (21)

In the rootλ of the context tree we will now find weighted probabilities which can be used as coding
probabilities for arithmetic encoding and decoding.

Example: Again suppose that the source generated the sequence 0100110 while the past symbols were

PPPPPP������

PPPPPP������

HHHHHH������

HHHHHH������

@
@

@
@

@@
�

�
�

�
��

PPPPPP������

a = 1

a = 1

a = 1

b = 2

a = b = 1

Pw = 1/2

Pw = 1/8

Pw = 1/2

Pw = 1/2

Pw = 3/8

PPPPPP������

a = 1

.

Pw = 1/2

a = b = 1

a = 2

b = 2

a = 2, b = 1

Pw = 9/128

Pw = 5/16

Pw = 3/8

a = 4, b = 3Pw = 1/8

Pw = 7/2048

Pw = 1/16

a = b = 2

1

0

Figure 6: Weighted context tree for source sequence 0100110 with past· · · 110.

· · · 110. This results in the countsas andbs , and weighted probabilitiesP s
w, for s with depth≤ D, which are

depicted in the context tree in figure 6.

10.3 Analysis

We start this subsection by taking a look at an example.
Example: Suppose thatS = {00, 10, 1} is the model of the actual source. The depthD of our context

tree is 3. Then for the leaves of this model we can lower bound the weighted probabilitiesP s
w by the

Pe(as, bs)-terms, i.e.

P 00
w ≥ (1/2)Pe(a00, b00),

P 10
w ≥ (1/2)Pe(a10, b10),

P 1
w ≥ (1/2)Pe(a1, b1), (22)

9

while for the internal nodes we use theP 01
w · P 1s

w -term as lower bound, hence

P 0
w ≥ (1/2)P 00

w · P 10
w

≥ (1/8)Pe(a00, b00)Pe(a10, b10) and

P λ
w ≥ (1/2)P 0

w · P 1
w

≥ (1/32)Pe(a00, b00)Pe(a10, b10)Pe(a1, b1). (23)

From the example we may conclude that we loose a factor 1/2 in all |S| leaves and|S| − 1
internal nodes of the actual model, hence

P λ
w ≥ 21−2|S| ·

∏
s∈S

Pe(as, bs). (24)

Using (8) we find that

L(xT
1) < 2|S| − 1 + log 1/

∏
s∈S

Pe(as, bs) + 2, (25)

which is 2|S| − 1 bits more than the bound in (14), where the model was known. Therefore also
the bound on the individual redundancy is 2|S| − 1 bits larger than the bound in (15), i.e.:

ρ(xT
1) < 2|S| − 1 + |S|γ (

T

|S|) + 2. (26)

The increase of 2|S|− 1 bits can be considered as the cost of not knowing the model, i.e. themodel
redundancy. Note that (26) holds for allxT

1 and allθs ∈ [0, 1] for s ∈ S for all modelsS that fit in
our context tree.

10.4 Optimality

The expected redundancy behavior of the CTW method achieves the asymptotic lower bound
determined by Rissanen in [6]. This lower bound states that roughly(1/2) logT bits per parameter
is the minimum possible expected redundancy forT → ∞.

10.5 MDL behavior

So far we have only compared the CTW codeword length resulting from our source sequencexT
1 to

the ideal codeword length relative to the actual source. We have shown that this codeword length
is upper bounded by the ideal codeword length plus an upper bound for the individual redundancy
in terms of the sequence lengthT and the number of parameters|S| of the actual source.

If however thisxT
1 was generated by some other tree source the same bound on the codeword

length applies but now with the ideal codelength and redundancy as determined by the other source.
Hence upper bounds like this, for all tree sources, hold for the CTW codeword length and the CTW
algorithm minimizes, over all tree sources, the sum of the corresponding ideal codeword length and
redundancy. This can be considered as minimum description length (MDL) behavior, if we realize
that the redundancy is needed to describe the source model and parameters.

10

10.6 Complexity

In section 5 we have seen that we can use arithmetic coding if, afterx1x2 · · · xt−1 is processed and
Pc(x1x2 · · · xt−1) is known, it is easy to computePc(x1x2 · · · xt−10) andPc(x1x2 · · · xt−11). Does
this hold for the CTW algorithm? Fortunately it does! See the example below.

Example: Suppose that the source has already generated the sequence 0100110 while the past symbols

@
@

@
@

@@
�

�
�

�
��

PPPPPP������a = 1

b = 2

Pw = 3/8

a = 2

a = 3

a = 5, b = 3

HHHHHH������

Pw = 1/4

Pw = 1/16

Pw = 27/512

Pw = 1/2

Pw = 3/8 Pw = 153/65536

a = 3, b = 2

1

0

.

Figure 7: Updated path of the weighted context tree for 0100110 followed by a 0 with past· · · 110.

were· · · 110. This resulted in the weighted context tree in figure 6. In the root of the context tree we found the
coding probabilityPc(0100110| · · · 110) = P λ

w = 7/2048. For processing the next source symbol we must
compute the coding probabilityPc(01001100| · · · 110). This is done by (i) incrementingas , (ii) updating
Pe(as, bs), and (iii) updatingP s

w, for all contextss ∈ {110, 10, 0, λ}, i.e. along the path in the context tree
determined by the symbols preceding the next source symbol. The results of these computations are shown
in figure 7. Doing so we findPc(01001100| · · · 110) = P λ

w in the root of the context tree. In a similar way
Pc(01001101| · · · 110) can be determined.

We conclude by stating that the number of operations necessary for processing allT source
symbols is linear inT . Moreover, since we only need to store nodes in the context tree that actually
did occur, and since for each symbol we can visit not more thanD+1 nodes, the amount of memory
needed to compressxT

1 grows not faster than linear inT .

11 Text compression

Application of the binary CTW method for compression of ASCII sequences is possible after
decomposingthe ASCII symbols into 7 binary digits. Moreover we use 7 context trees. Treej ,
wherej = 1, 2, · · · , 7, is used for coding all binary digits occurring at positionj in an ASCII. The
(longest) context of digitj are the digitsj − 1, · · · , 1 of the current ASCII preceded by the 7 digits
in the most recent ASCII, preceded by the 7 digits in the second most recent ASCII, up to theM ’th
most recent ASCII. Digit 1 in an ASCII is the most significant one, and is encoded first, etc. By
decomposing we allow different tree models for all 7 digits. This may reduce the total number of
parameters and thus the redundancy.

The next problem that has to be solved is that the parameter redundancy depends on the num-
ber of parameters, however, after decomposition many of these parameters are 0 or 1, possibly
because of non-occurring ASCII symbols. Therefore we use, instead of the KT-estimator, the

11

“zero-redundancy” estimator, which is defined as

P z
e (a, b)

1= 1

2
Pe(a, b) + 1

4
ϑ(a = 0) + 1

4
ϑ(b = 0), (27)

wherePe(a, b) is the KT-estimator andϑ(true)
1= 1 andϑ(false)

1= 0. This leads to a redundancy
of not more than 2 bits for deterministic subsequences, i.e. sequences witha = 0 or b = 0, and
(1/2) logτ + 2 for non-deterministic ones having lengthτ , whereτ = a + b.

Our final problem deals with model redundancy. Note that context treej , for somej = 1, · · · , 7,
“fits” a model to the data (digits occurring at positionj) which is a binary tree. Such a tree can have
leaves also at positions inside an ASCII symbol. This seems not very useful. By allowing leaves
only at ASCII borders we decrease the model redundancy. This is accomplished byweighting only
at ASCII borders, i.e. takingP s

w = P 0s
w · P 1s

w in nodes inside an ASCII andP s
w = (P z

e (as, bs) +
P 0s

w · P 1s
w)/2 in nodes on ASCII borders.

ASCII CTW for M = 12 achieves 1.825 bit/sym on the filebib , 2.180 bit/sym onbook1 ,
1.875 bit/sym onbook2 , 2.346 bit/sym onnews, 2.290 bit/sym onpaper1 , 2.232 bit/sym on
paper2 , and 2.336 bit/sym onprogc of the Calgary corpus.

12 Conclusion

We believe that context-tree weighting simplified the theory and practice of statistical data com-
pression methods. It is important to distinguish between model and parameters and to realize that to
both of them there corresponds a redundancy term. Good algorithms take care of both redundancies.
The model redundancy of CTW is optimal in the rather weak sense that we can decrease the redun-
dancy for some models only by increasing the redundancy of other models. This is a consequence
of weighting. There are other weightings that result in other model redundancy profiles, however
CTW has the nice property that the model redundancy is (almost) proportional to the number of
parameters.

The CTW method is generally considered to be rather complex. A state-of-the-art implemen-
tation requires 32 MByte of RAM. Today this may seem a lot, however for sure, in ten years from
now this is “peanuts.” A challenging problem is to find methods that improve the compression rate
of e.g. CTW by making use of the huge amounts of memory that will be available in the future.
Of particular interest are of course methods that allow parallel implementation. We hope that the
mini-course presented here will be a starting point for people interested in achieving this goal.

Acknowledgments

Meir Feder, assoc. editor for source coding, nominated [7] for the IT Best Paper Award. KPN
Research financed CTW implementation research. Paul Volf joined us in our text compression
efforts. Harry Creemers provided us with computing facilities. Yuri’s visits were supported by the
Universiteitsfonds Eindhoven and INTAS 94-469. Thanks!

12

References

[1] T.M. Cover and J.A. Thomas,Elements of Information Theory.New York : John Wiley, 1991.

[2] R.E. Krichevsky and V.K. Trofimov, “The Performance of Universal Encoding,”IEEE Trans. Inform.
Theory,vol. IT-27, pp. 199-207, March 1981.

[3] R. Pasco,Source Coding Algorithms for Fast Data Compression,Ph.D. thesis, Stanford University,
1976.

[4] J. Rissanen, “Generalized Kraft Inequality and Arithmetic Coding,”IBM J. Res. Devel., vol. 20, p.
198-203, 1976.

[5] J. Rissanen, “A Universal Data Compression System,”IEEE Inform. Theory,vol. IT-29, pp. 656-664,
September 1983.

[6] J. Rissanen, “Universal Coding, Information, Prediction, and Estimation,”IEEE Inform. Theory,vol.
IT-30, pp. 629-636, July 1984.

[7] F.M.J. Willems, Y.M. Shtarkov and Tj.J. Tjalkens, “The Context-Tree Weighting Method: Basic Prop-
erties,”IEEE Trans. Inform. Theory,vol. IT-41, pp. 653-664, May 1995.

About the Authors

Frans M. J. Willems
Frans M. J. Willems was born in Stein, The Netherlands, on June 26, 1954. He received the M.S. degree

in electrical engineering from Eindhoven University of Technology, Eindhoven, The Netherlands and the
Ph.D degree from the Catholic University of Louvain, Louvain, Belgium in 1979 and 1982 respectively.
From 1979 to 1982 he was a research assistant at the Catholic University of Louvain. Since 1982, he is a
staff member at the Electrical Engineering Department of Eindhoven University of Technology. His research
contributions are in the areas of multi-user information theory and noiseless source coding. Dr. Willems
received the Marconi Young Scientist Award in 1982. From 1988 to 1990, he served as Associate Editor for
Shannon Theory for the IEEE Transactions on Information Theory.

Yuri M. Shtarkov
Yuri Shtarkov was born in Moscow, Russia on January 31, 1935. He graduated from the Moscow

Institute of Physics and Technology in 1960 and received the candidate of technical sciences and doctor of
technical sciences degrees in 1967 and 1981 respectively. He held various research positions at the Institute
for Space Research of the Academy of Sciences of the USSR (1966-1983) and at the Institute for Problems
of Information Transmission (IPPI) of the Academy of Sciences of the USSR (from 1983). Now he is
leading researcher at IPPI. His current scientific interests include source coding, data compression and their
applications.

Tjalling J. Tjalkens
Tjalling Tjalkens was born in Arnhem, The Netherlands, on April 4, 1957. He received the MS degree in

electrical engineering from the Eindhoven University of Technology, Eindhoven, The Netherlands in 1983
and the Ph.D. degree from the same university in 1987. From 1983 to 1986 he was a Research Assistant at
the Eindhoven University of Technology and since 1986 he is a staff member at the same university. From
August 1989 till February 1990, he was a visiting scientist at the Technical University of Lund, Sweden. His
research interest is in (universal) source coding theory and its applications.

13

